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Abstract We study numerically a continuum model for
granular flow, which covers the regime of fast dilute flow
as well as slow dense flow up to vanishing velocity. The
constitutive relations at small and intermediate densities are
equivalent to those derived from kinetic theory of granular
flow. The existence of an inherent instability due to the van-
ishing kinetic or collisional pressure for small granular tem-
peratures requires a cross over from a collisional pressure
to an a thermal yield pressure at densities close to random
close packing. Contrary to a kinetic viscosity, the viscosity
turns into a function diverging for small temperatures analo-
gous to the diverging viscosities of liquids close to the glass
transition. In this respect the presented model is a simplified
version of a model of Savage (J Fluid Mech 377:1–26, 1998),
which nevertheless recovers many aspects of dense granular
flow. As examples we show simulations of sandpiles with
predictable slopes, hopper simulations with mass and core
flow and angle dependent critical sand heights in flows down
an inclined plane. We solve the system of the strongly non-
linear singular hydrodynamic equations with the help of a
newly developed nonlinear time stepping algorithm together
with a finite volume space discretization. The numerical algo-
rithm is implemented using a finite volume solver framework
developed by the authors which allows discretization on cell-
centred bricks in arbitrary domains.
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1 Introduction

There is still no theory for the description of granular flow
on a macroscopic scale with the same accuracy as the
Navier Stokes equations for simple liquids. The main reasons
are the existence of a very efficient mechanism for energy
dissipation in the form of inelastic collisions and the lack
of a clear time and spatial scale separation in the flow of
granular material [2]. For weakly inelastic granular media
kinetic theory provides a framework for deriving the cor-
rect hydrodynamic equations [3] under the usual assump-
tion of molecular chaos and instantaneous collisions between
grains. Although both assumptions might be violated for
large energy dissipation [4,5] and despite of sometimes
large spatially localized density fluctuations, the heuristically
modified constitutive relations obtained from kinetic theory
turn out to be a very useful tool for many simulations of
granular flow in application problems at small and interme-
diate volume fractions as e.g. the simulation of fluidized beds
[6] or hydrodynamic instabilities and pattern formation in
granular gases [7,8]. For volume fractions close to the maxi-
mum packing fraction, the validity of kinetic theory becomes
questionable, since the assumption of only collisional binary
contacts between the grains is not valid anymore. Neverthe-
less striking good agreement between simulations [9,10] or
experiments [11,12] at large volume fractions and hydrody-
namic theory have been reported in the literature. The latter
have especially shown that kinetic theory is able to mimic
solid like behavior by exhibiting a solid like Coulomb stress
as a solution of the hydrodynamic equations under shear-
ing conditions. The existence of a dynamic Coulomb stress
might explain why simulations and experiments under the
condition of permanent driving as in the experiments or per-
manent input of energy via boundary conditions as in the
molecular dynamic simulation can be reproduced by hydro-
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dynamic theory at all. The proper theory of the stress for
flowing granular media close to maximum packing fraction,
where collisional contacts of grains are replaced by frictional
contacts, would be some theory of static friction as e.g. the
Coulomb friction theory. But, so it seems, the dynamic Cou-
lomb friction of the hydrodynamic theory is able to mimic
the true Coulomb friction, if there is permanent energy input
to prevent the granular system from arresting.

In our paper we are also interested in situations where
there is no permanent source of external energy to balance the
internal dissipation. We will show that kinetic theory alone
due to an inherent thermodynamic instability in certain flow
conditions is not able to reproduce the resulting qualitative
behavior of arresting flows like e.g. the formation of heaps
during a filling process. Motivated by the work of Savage [1],
we present a simplified hybrid model of kinetic theory and
a theory derived from soil mechanics, which overcomes the
difficulties observed in kinetic theories and extends the appli-
cability of hydrodynamic theory to arresting granular flow.
The obtained nonlinear hydrodynamic equations are solved
with a newly developed nonlinear finite volume algorithm
[13, Section 2.4]. We test the theory by simulating heap for-
mation with predictable angle of repose, by comparing simu-
lations of flow down an inclined plane with experiments and
by reproducing core and mass flow in silos.

The paper is organized in the following way. In Sect. 2
we introduce the model in detail. In Sect. 3 an outline of the
numerical algorithm is given. The potential of the model to
reproduce essential properties of granular materials is dem-
onstrated in Sect. 4. We conclude the results in Sect. 5.

2 Constitutive modeling

2.1 Conservation equations

We begin with the conservation equations for mass density ρ

and momentum density m = ρu on a spatial scale which is
large compared to the size of the grains, where u is the center
of mass velocity.

∂ρ

∂t
+ ∇(uρ) = 0 (1)

∂(ρu)

∂t
+ ∇(ρu ⊗ u) = ∇σ + f (2)

The tensor σ is the total stress tensor including pressure
and f is some external force density. It is convenient to split
the stress tensor in scalar p and deviatoric part σ D by

σ = −pI + σ D. (3)

The velocity dependent part of the stress tensor is already
contained in the convective term on the left hand side of
the Eq. (2). There is no mechanism for sustaining deviatoric

strain in the theory tested here, therefore the deviatoric stress
will only depend on the strain rates, the state variables ρ and
the granular temperature T . p will depend on density and
granular temperature. In addition it is shown, that a contri-
bution reminiscent of the trace of a strain rate tensor (see
Sect. 2.4) is necessary to obtain stable physical solutions.
To capture the granular aspects of the flow we make use of
the granular temperature T as defined within the kinetic the-
ory of granular flow [3]. In a constant pressure ensemble
the equation for the granular temperature is given by (see
Appendix. A)

cpρ

(
∂T

∂t
+ u∇T

)
= −ρ̂s∇q + σ D : κ − 3

2
ρεT . (4)

Here cp, q, ε are the granular specific heat at constant pres-
sure per unit mass, the granular heat flux and the temperature
dissipation rate due to inelastic interactions of the grains,
respectively. κ is the strain rate tensor, whose definition is
given below in Eq. (8). The quantity ρ̂s is the specific den-
sity of the grains. The expression for the specific heat at con-
stant pressure cp can be derived by transforming the standard
equations at constant volume [3] to constant pressure. It is
given by

cp = 3

2
+ p

ρ2

⎛
⎜⎜⎝

∂ps

∂T
|c

∂ps

∂ρ
|T

⎞
⎟⎟⎠ . (5)

cp converges to the ideal gas value cp = 5/2 for ρ → 0.
Except for the last term, which describes the dissipation of
granular temperature due to inelastic collisions, the Eq. (4)
has the usual form of the heat transport equation [14]. The left
hand side describes the change of granular temperature due
to free streaming. On the right hand side the effects of dif-
fusive temperature transport, viscous heating and dissipation
are accounted for.

2.2 Constitutive equations from kinetic theory

To obtain a closed model, constitutive relations for the trans-
port coefficients are necessary. The aim is to develop a model
which is physically consistent and stable in the dilute regime
as well as in the dense slow flow regime. In general it is not
possible to rigorously derive constitutive models. Small and
intermediate densities are well described by the constitutive
relations from kinetic theory. Therefore it is possible to derive
the hydrodynamic equations in this case and to obtain expres-
sions for the stress tensor, the heat flux, all transport coef-
ficients and the pressure [3,15]. Improved expressions for
transport coefficients and equation of state may be obtained
from molecular dynamic simulations [16–18]. An overview
about the current state of modeling dense granular systems
may be found in [19]. More complicated equations of state
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apply for wet granular matter [20]. Since the hydrodynamic
equations are derived using Chapman–Enskog theory the
stresstensor and the heat flux are in lowest order linear in
gradients of the hydrodynamic variables i.e.

σ D = 2ηκ (6)

and

q = −λ∇T, (7)

with the non symmetrized strain rate tensor κ defined as

καβ := ∂vα

∂xβ

. (8)

The use of a symmetric stress tensor σ D would have lead
to so called mixed derivatives (i.e. derivatives of the form
∂2ux/∂y∂x) in the resulting non linear Navier Stokes equa-
tion. Numerical tests showed that these derivatives cause
large unphysical spreading of granular jets perpendicular to
the flow direction, which motivated us to choose the non sym-
metrized form. A non symmetric stress tensor violates the
conservation of angular momentum of the macroscopic flow
field. Although it would be very hard to justify for simple
liquids, this violation is not uncommon for hydrodynamic
flow of fluids with internal rotational degrees of freedom
[21,22] and is used for the modeling of collisional granu-
lar flow [23]. Friction between touching grains inhibits rota-
tion of the grains and gives rise to a transfer of translational
motion into rotations and vice versa. The latter mechanism
can lead to a local dissipation of momentum. The unsymmet-
rized stress tensor is in this context motivated by defining a
rotational viscosity ηR , which we chose to be equal to the
shear viscosity i.e. ηR = η and the definition of the stress
tensor as

σ = η

2

(
κ + κT

)
+ ηR

2

(
κ − κT

)
. (9)

Although the concept of rotational viscosity is used in the
context of granular flow, we want to point out, that there are
strong arguments against using non symmetric stress tensors
[24]. We are especially not aware of any compelling argu-
ment to set the rotational viscosity equal to the shear viscos-
ity, except for our numerical observation, that the simulations
of granular jets look much more physical. But we also want
to point out that for incompressible fluids with constant vis-
cosity η the neglected part κT of the strain rate tensor does
not contribute at all to the accelerating force due to

∂

∂xβ

(
ηκT

αβ

)
= ∂

∂xβ

(
η
∂vβ

∂xα

)
= η

∂

∂xβ

(div v) = 0. (10)

We therefore expect, that in the dense regime of granular
flow, where we have only a weakly compressible flow, our
approximation does not influence the results too strongly.

The expressions for the transport equations also follow
from kinetic theory. Their exact form is quite involved [15].

It was shown in [11,12], that quantitatively correct results
can be obtained by a much simpler form of the equations. We
therefore choose a similar form as in [11] for the expressions
of the transport coefficients and the pressure, preserving the
low density and high density limit. The kinetic expressions
are denoted by the subscript K and are given as

pK = T g(ρ)ρ (11a)

εK := ε0ρ
2
√

T g(ρ) (11b)

λK := λ0
√

T g(ρ) (11c)

ηK := η0
√

T g(ρ)β, (11d)

where

g(ρ) :=
(

1 − ρ

ρc

)−1

(12)

is the value of the radial distribution function at contact. The
kinetic or collisional pressure is an interpolation between
the low density limit p = ρT and exhibits a divergence at
ρ = ρc found in simple kinetic theory (with Enskog correc-
tions) [3]. The simulations show, that there is a need to have
the same type of divergences in all three quantities in order to
obtain stable unique solutions for the resulting equations (see
Sect. 4.4). If a different approximation for the pressure with
a different type of divergence is chosen (e.g. Carnahan Star-
ling approximation [25]), all three quantities were to change
in order to get stable solutions.

The bulk viscosity, which has a similar form as the shear
viscosity except for a different small density behavior ∝ ρ2

was set to zero. Test simulations with a different version of
our numerical code showed, that the use of a nonzero bulk
viscosity did not qualitatively change our results. The expo-
nent β was introduced in [11] to capture glassy aspects of the
dense dynamics. In comparison with shearing experiments it
was found to be between 1 and 2. We choose a value of
β = 1, since our simulations showed that any value differ-
ent than β = 1 had a very destabilizing effect on the for-
mation of heaps in filling simulations (see Sect. 4.4). Recent
results [17,18,26] seem to indicate that the viscosity diverges
at a smaller density than other constitutive relations. Con-
sequences of such a behavior on the numerical stability of
complex hydrodynamic simulations remain to be tested.

2.3 Shortcomings of the kinetic constitutive equations

The kinetic constitutive equations seem to work quite well in
a large range of densities. Phenomena like narrow albeit finite
shearing zones, solid like stress behavior in steady shear flow
and dependencies of height vs. angle for the gravity driven
flow down an inclined plane can be calculated quantitatively
[11,12]. Both physical situations have in common the contin-
uing input of energy either via the application of a permanent
torque or a permanent transformation of potential energy into
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kinetic energy of the flow. In these situations there is always
a nonzero granular temperature which guarantees that the
purely thermal collisional pressure pK Eq. (11a) stabilizes
the system. Kinetic theory used for granular flow does not
account for the strongly repulsive forces between the grains
except for the Enskog corrections to pressure and transport
coefficients in form of the radial distribution function at con-
tact approximated by the function g in Eq. (11). But there is
no athermal pressure independent of temperature.

If for any reason, the temperature reaches the zero limit
faster than the density increases to the maximum packing
fraction ρc, there is no force which prevents the system from
collapse. This situation will for example occur when a box
is filled and the grains are eventually coming to a rest. In this
case the granular temperature vanishes and thus the colli-
sional pressure, kinetic viscosity and stress. Due to the grav-
itational force in Eq. (2) no stationary solution for the velocity
exists, if the temperature vanishes.

To understand how the state of zero temperature and maxi-
mum packing fraction is reached we investigate Haff’s homo-
geneous cooling for the granular system described by Eqs. (4)
and (11). Neglecting the gradients in the temperature and the
velocities we obtain from (4)

cp
∂T

∂t
= −3

2
εT . (13)

For the final approach to the maximally packed state we can
in leading order replace cp(ρ) by cc

p := cp(ρc) and ε(ρ, T )

by εc with

εc := ε0ρ
2
c

√
T g(ρ) (14)

to obtain the equation

∂T

∂t
= −3ε0ρ

2
c

2cc
p

gT 3/2. (15)

Close to the maximum packing fraction the densities may be
assumed to be constant [27] and Eq. (15) is solved by Haff’s
law

T (ρ, t) = T0(1 − (ρ/ρc))
2

(1 − (ρ/ρc) + A
√

T0(t − t0))2
(16)

with A = 3ε0ρ2
c

4cc
p

. Using this expression for T in the collisional

pressure pK (Eq. 11a), we see that the pressure vanishes with
the density approaching the maximum packing state ρ = ρc.
In addition the system becomes thermodynamically unsta-
ble. This can be seen by calculating dpK (T (ρ, t))/dρ using
Eqs. (11a) and (16), which is for large times given by

dpK

dρ
≈ 1

A2(t − t0)2

(
1 − 2

ρ

ρc

)
for t → ∞. (17)

Already for ρ > ρc/2 the compressibility would become
negative for the pure homogeneous cooling case in the
asymptotic long time limit. In the standard free homogeneous

cooling case (see e.g. [3]) the density dependence of the dis-
sipation coefficient is not considered. A phenomenon remi-
niscent of inelastic collapse [28] is obtained, when Eq. (15)
is solved at constant pressure close to ρ = ρc and the sys-
tem is allowed to contract homogeneously. In this case we
obtain from (11a) g(ρ) ≈ p/(ρcT ) and (15) is solved by
T = T0(1 − A(p/ρcT0)(t − t0))2), which leads to a zero
granular temperature and consequently maximum packing
fraction in finite time. Since the pressure stays finite in this
scenario, there is no mechanism to prevent the system from
going beyond the maximum packing fraction into regions
with negative compressibility, which can easily be seen by
setting the temperature back into the expression for the den-
sity and performing the derivative with respect to the density.
The homogeneous state is never reached in simulations, since
there will be spatial fluctuation of the density or the pressure.

In simulations the effect of negative compressibility
appears as regions in which mass can be accumulated indef-
initely. Therefore the simple kinetic model did not allow for
simple filling simulations. Similar regions of negative com-
pressibility have been found in other kinetic models of gran-
ular gases [29].

In addition to this instability, there are also indications
[30], that for high densities and small granular temperatures,
the viscosity should not decrease with decreasing tempera-
ture as in Eq. (11) but rather dramatically increase compa-
rable to the behavior observed in disordered systems close
to the glass transition. This discrepancy is due to neglecting
collective phenomena caused by the strong repulsions of the
grains.

In the following we will introduce a static pressure inde-
pendent of the granular temperature and consistent modifica-
tions of the viscosity and dissipation coefficients. With these
modifications the shortcomings of the purely kinetic theory
will be removed and quasi static solutions will be possible.

2.4 Hybrid constitutive model

We have seen that a purely kinetic model gives rise to insta-
bilities which we, at least in this form, do not expect to exist
in reality. The problem is not so much, that there are nega-
tive compressibilities or finite times in which the maximum
packing state is reached. The true problem is, that the kinetic
model does not contain any mechanism to stabilize the sys-
tem again. In reality, there may be transient local negative
compressibilities in out of equilibrium situations, but this
always leads to processes which drive the system back to
thermodynamic stable states. In granular systems it is the
underlying solid nature of the grains which stabilizes the con-
tracting granular system. The zero granular temperature state
at maximum packing fraction is stable due to repulsive forces
between the grains and elastic forces within the grains, which
limit the increase of the solid volume fraction of the granular
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systems. These elastic forces are not contained in kinetic the-
ories and at zero granular temperature the collisional pressure
(11a) is zero. Consequently a resting granular system is not
stable within kinetic theory, since at T = 0 external forces
cannot not be balanced in the momentum Eq. (2).

One possibility to cure this problem is to introduce ex-
plicitely the equations for the solid granular behavior and to
couple it to the hydrodynamic equations [31]. Here we will
propose a simpler approach in order to limit the numerical
efforts. The main reason for the observed instability was the
purely collisional pressure.

In reality the pressure will have a component due to the
elastically deforming grains, which is independent of the
granular temperature. Instead of calculating the full strain
tensor, whose trace gives rise to the elastic pressure [31], we
will mimic this pressure by introducing a temperature inde-
pendent but density dependent pressure pY which diverges
at maximum packing fraction. A first attempt to create such a
model was presented by Savage in [1]. We will adopt a simpli-
fied model which nevertheless captures the essential features
of the more elaborate model of [1] and is able to reproduce
many known experimental results of granular flow from fast
to slow dense flow.

The main idea is to introduce a cross over density ρ0,
where the pressure acquires an additional contribution pY

which is independent of the granular temperature. In the
model of Savage this pressure is related to a pressure on
the yield surface during quasi static deformations. Different
functional dependencies on the density can be found in the lit-
erature (see [1] for a discussion of the literature). We choose
for simplicity the same form as for the collisional pressure,
resulting in a stronger divergence of the pressure as in [1].
Numerical tests for other dependencies did not lead to qual-
itatively different results. The yield pressure pY is given by

pY = �(ρ − ρ0)T0(ρ − ρ0)g(ρ), (18)

where � is the Heaviside step function. The scaled distance
δ = (ρ − ρ0)/ρ0 from the density ρ0 may be considered
as a measure for the introduced strain. The effectice elastic
compressional modulus Kef f in this interpretation would be
Kef f = ρ0T0g(ρ). The total pressure is then written as

p = pK + pY . (19)

The resulting equation of state for the density as function of
pressure and granular temperature is then given by

ρ(p, T ) =
⎧⎨
⎩

ρc
p

ρcT + p , p ≤ p0

ρc
p + T0ρ0

p + ρc(T + T0)
, p > p0

, (20)

with

p0 = ρ0T g(ρ0). (21)

With this choice for p0 the density is continuous at p0

albeit not continuously differentiable. The discontinuous
compressibility does not to influence the result of our simu-
lations qualitatively.

The transport coefficients η and λ as well as the dissipa-
tion rate ε also have to be modified to guarantee that they
do not vanish with vanishing temperature. We will choose a
form which makes sure that

– the viscosity is diverging with vanishing temperature,
consistent with a glass transition scenario at T = 0 [11],

– the cross over from the kinetic to the yield regime does not
modify the internal friction angle (see below in Sect. 4.1)

η := ηK

(
1 + pY

pK

)
(22a)

ε := εK

(
1 + pY

pK

)
(22b)

λ := λK

(
1 + pY

pK

)
. (22c)

The mathematical form of (22) is the same as in [1]. We
will show in 4.1 that it guarantees the continuity of the inter-
nal friction angle (25) at p = p0.

The final equations governing the flow are given as:

∂tρ + div (ρu) = 0 (23a)

∂t (ρu) + div(ρu ⊗ u) − div (ηκ) = − grad(p)+ρg

(23b)

∂t (cpρT )+ div(ucpρT ) − div (λ grad (T ))=ηκ : κ−εT .

(23c)

3 Numerical algorithm

We briefly describe the space discretization of the equa-
tions in (23) and how the resulting semi-discrete system is
advanced in time. The computational domain is discretized
into N finite volumes. The unknowns are located at the vol-
ume centres and each volume has 2d faces in the d Carte-
sian directions where d denotes the dimension of the space.
Plainly speaking, we discretize using cell-centred bricks as
volumes. The equations in (23) are first transformed to the
integral form and then discretized with the help of Gauss’
theorem. Convective terms are discretized using first order
upwinding. Diffusive terms are then discretized as the sum of
gradients over the faces multiplied by the face area where the
face gradients are approximated by first order differencing
using the adjacent cell center values.

3.1 Nonlinear pressure correction algorithm

After space discretization we are left with a semi-discrete
system. The question arises how to numerically advance this
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system in time. We argue for an implicit scheme because
of the high viscosities for small temperatures and large
densities. Explicit schemes would be bound to a timestep
restriction of type τ < h2/η where h is the scale of space dis-
cretization. For large viscosities, explicit schemes are there-
fore not useful.

Furthermore, we construct an algorithm around the pres-
sure as the independent variable because pressure is allowed
to vary between zero and infinity whereas the volume fraction
depends on the pressure and has strict bounds between zero
and random closed packing for spheres at 0.64. Numerous
numerical experiments suggest that a linear pressure correc-
tion fails for our system. The highly nonlinear algebraic rela-
tions, especially in areas where the dilute and dense regimes
are close introduce nonlinear terms when a pressure algo-
rithm is derived. We decouple temperature from our system
and need to fullfill (in the absence of external forces)

ρ(pn+1)un+1 − ρnu P

τ
+ grad

(
pn+1 − pn

)
= 0

ρ(pn+1) − ρn

τ
+ div

(
ρ(pn+1)un+1

)
= 0,

where the superscripts n+1 and n denote the unknown values
at the current timestep and the values from the previous time-
step, respectively. A velocity u P is predicted through the line-
arized Navier–Stokes equation at the pressure of the previous
timestep. We introduce a “nonlinear version” of the pressure
operator usually applied in the linear case L(ρn+1, pn+1)

and need to solve an equation of the form

[
L − 1

τ 2

] (
ρ(pn+1)

)
=

[
L − 1

τ 2

] (
ρ(pn)

) + 1

τ
D(ρnun)

plus additional terms, where τ is the timestep, D is the dis-
crete divergence and both L and ρ are nonlinear functions
of the pressure. This equation is discretized in space on a
cell-centred finite volume grid and solved using a Netwon-
type method. Based on this new pressure, the velocity is then
corrected.

Let us remark that many attempts to find a stable algo-
rithm using a linear pressure correction type algorithm have
preceded this work. We found that the nonlinearity of the
equations, especially the dependence of density on pressure
(20) does not allow the straightforward use of standard linear
pressure correction schemes. The second problem, the need
for our scheme to work in both compressible and incompress-
ible regimes has been addressed for the linear case. We cite
here exemplary [32] and [33]. However, all pressure correc-
tion methods linearise the pressure equations which in our
case is not permissable. We take into account the full non-
linearity of the problem. Another type of nonlinearity in the
pressure correction which is introduced through the upwind
discretization of the mass flux in the compressible case is

already discussed shortly in [34]. We make use of some of
ideas developed there.

For a detailed mathematical description of the sketched
method we refer to [13, Chap. 2].

4 Numerical experiments

In this section we will show that the presented hybrid model
for granular flow can be solved with our numerical algorithm
and is able to reproduce typical granular flow patterns from
dilute to dense regimes. We will concentrate on the dense
regime, since the model is equivalent to often tested kinetic
theory in dilute and intermediately dense flow.

Let us describe the numerical setup. The space discreti-
zation, as described in Sect. 3, is a grid of finite volumes.
The grid is usually refined towards the boundary, as is com-
mon practice in numerical simulations of fast flow as bound-
ary effects are relevant there. For granular flow, boundary
effects (shear bands etc.) occur also in the slow regime which
is why we make use of the boundary refinement. The sim-
ulations are done using a finite volume solver framework
CoRheoS developed by the authors. We solve the full non-
linear unsteady problem for each simulation. Details specific
to the numerical experiment like timestep, grid resolution etc.
will be given in the respective subsections following. For the
constants involved in the constitutive relations we use

ρc = 0.64, β = 1.75, T0 = 0.5, c0 = 0.6,

ε0 = 6754.31
1

s
, η0 = 0.00023

m2

s
, λ0 = 0.00034

m2

s
.

Throughout all simulations we use no-slip boundary con-
ditions for solid walls, i.e. we prescribe the velocity there to
be zero. The effect of finite wall slip will be investigated in
future publications.

4.1 Studies on the angle of repose

One of the most obvious observable properties that make
granular media different from common fluids is the forma-
tion of piles. Even though the resulting angle of repose is
not a material property, it is often very close to the internal
friction angle which quantifies the frictional interactions of
the grains.

It has been shown [11], that solid like behavior is a solu-
tion of the purely kinetic model. By solving Eq. (23) with
the kinetic expression for pressure and transport coefficients
(11) for a shearing experiment at constant pressure, the shear
stress σxy will be proportional to the normal stress compo-
nent given by the pressure p independent of the shear rate
i.e

σxy = p tan Φ (24)
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where the tangent of the internal friction coefficient is given
by

tan Φ = √
ε0η0. (25)

We will now show, that we obtain the same relation with
the choice of the hybrid model Eqs. (19) and (22).

For an ideal shearing experiment the coordinate system
can be chosen such that the changes of the velocity are per-
pendicular to the direction of the velocity. If we choose the
velocity u = (u(y), 0, 0) the only non vanishing shear stress
component is σxy = η∂u/∂y. From the equation for the gran-
ular temperature neglecting gradients in the granular tem-
perature we find from the balance of viscous heating and
dissipation

η

(
∂u

∂y

)2

− εT = 0. (26)

The ratio of shear stress and pressure is given by

σxy

p
= η

p

∂u

∂y
. (27)

With Eq. (26) this can be written as

σxy

p
=

√
ηεT

p
. (28)

Using Eqs. (18) and (22) we obtain

σxy

p
=

√
ηK εK T

pK
(29)

which gives with Eq. (11) immediately (if β = 1) expres-
sions (24) for the purely kinetic model as well as for the
hybrid model and (25) for the ratio of shear stress and nor-
mal stress. It is especially guaranteed, that the internal friction
angle is continuous at p = p0. The case β > 1 turns out to
be numerically instable (see Sect. 4.4).

The internal friction angle may differ by a few degrees
from the measured angle of repose (which varies slightly
through different experiments), the formula should still sug-
gest a range of values to match the angle of repose found in
our numerical experiments.

To measure the angle of repose we simulate a Hele-Shaw-
cell experiment using the hybrid model. We compute on a
two-dimensional grid with 94×82 cells of cell width 1.25×
10−2m. The grid is uniform within the domain and is refined
at the boundary to avoid that boundary effects obscure the
results.

For initial conditions, we “fill” the domain with a volume
fraction of sand of 1 × 10−4. At the inflow we prescribe Di-
richlet boundary conditions for the volume fraction (0.4) and
the velocity in y direction (−0.5 m/s). We should mention
that the whole process is simulated in one run of solving the
time-dependent equations described above. This includes the

Fig. 1 Inverse colour scale visualization of the volume fraction at the
final stages of filling a Hele-Shaw cell with granular media at angles,
from left to right, of 23◦, 40◦ and 48◦

free falling of grains out of the inlet as well as the formation
of the pile on the bottom.

We run the simulation for three different internal fric-
tion angles by using three different values of ε0 = 6,750 1

s ,
3,700 1

s and 1,000 1
s . With Eq. (25) this results in internal

friction angles Φ of 51◦, 42◦ and 25◦, respectively. The mea-
sured slopes resulting from the simulations and displayed in
Fig. 1 are found to be 48◦, 40◦ and 23◦. These values are
within the commonly expected proximity to the internal fric-
tion angle. The slopes are measured at medium height of the
pile where the least curvature is found.

4.2 Sliding of grains on an inclined plane

Another aspect of granular flow is the transition from rest to
flow depending on the magnitude of the acting force. An
extensively studied experiment is the sliding of layers of
granular media on an inclined plane. Depending on incli-
nation angle, the behavior of the granular media is quite dif-
ferent. Below the angle of internal friction, the grains either
stay at rest or only a thin surface layer begins to slide. If
the inclination is increased through and above the internal
friction angle, the thickness of the layer of resting material
decreases. In [12], a kinetic model of granular flow is studied
with regard to this aspect. A qualitative agreement to mea-
surements is found there. Among many references, it cites
[35] which gives experimental data for our comparison.

Our simulation is as follows. We study the flow in a thin
cell, whose width is around 3 grain diameters of 1.75 ×
10−4m. The height of the initial resting bulk of grains is
8 × 10−3m and rests on a 0.2 m long plane. The resolution
of the grid is 2 × 10−3m in x direction and 5 × 10−4m in y
direction. The initial conditions of resting sand are achieved
by a steady state computation on the horizontal plane. Then
the plane is inclined which initiates the transition from rest
to flow. The thickness of the resting layer is determined by
declaring all grain layers with velocity less than 1×10−3 m/s
as not moving.

Figure 2 collects the results of our simulations as a plot
of critical thickness against angle of inclination. Our simula-
tion scenario, the tilting of static layers, corresponds to [35,
Figure 1, open triangular markers]. The form of dependence
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Fig. 2 Plot of the thickness of the resting layer in number of grain
layers against the inclination angle in degrees. At large angles in zone
(c) no grains stay at rest at our grain layer resolution. In zone (b) which
is slightly above the internal friction angle of 30◦, the resting layer
depends strongly on the angle. At angles below, most of the grain lay-
ers rest and at significantly lower angles outside the figure extends, only
a thin surface layer moves

of resting layer thickness on the inclination angle from our
simulation is in very good agreement with the experimental
findings therein. At angles above 36◦, the authors of [35] find
a resting layer of 2 grain diameters thickness which is below
our resolution. Hence in our simulations we obtain no resting
layer at all for these angles.

We want to point out that in further agreement with exper-
iments the thickness of the resting layer approaches zero for
angles significantly above the internal friction angle, where
in [12] the thickness seems to become small but finite (see
[12, Fig. 1]).

It is reported that there is a difference between the critical
heights for the transition from resting to flowing on one side
and from flowing to resting on the other side (see experi-
ments cited in [36]). This difference is similar to the differ-
ence between static and sliding friction. Since static Coulomb
friction is not yet included in the model, we assume that it is
currently not possible to obtain this difference in our simu-
lations.

4.3 Core- and massflow during emptying of silos

Simulation of granular media finds a wide range of applica-
tions in the field of handling of bulk goods. The vast majority
of simulations in this area is carried out using DEM methods,
treating each grain as a separate particle. The drawback of
this method is the amount of grains that would need to be
simulated for a full hopper. For a hopper of industrial size,
a realistic estimate is 1 × 109 to 1 × 1012 particles which is
out of the reach of current computation equipment by many
orders of magnitude. Certainly there may be effects that can
only be simulated by accounting for single particle interac-

Fig. 3 Plot of an intermediate stage in the process of emptying a silo.
We plot the magnitude of the mass flux where dark areas mean a large
mass flux. In the left silo (25◦) we observe a large difference in mass
flux between the center and the side zones above the end of the hopper.
In the right silo we observe homogeneous flow throughout most of the
silo. The y-axis shows the height in m

tions, but those have to be restrained to much smaller scales.
With our method, we can simulate the complete process of
emptying an industry-sized hopper in days on standard non-
parallel workstation hardware.

A basic effect of silo flow is the distinction of core and
mass flow depending on the steepness of the silo cone. For
flat silos, so called core flow occurs where stagnation zones
occur close to the bottom of the silo and the mass flux is
concentrated more towards the center of the silo. For steep
silos, the grains at every point in the silo flow downwards,
no inverse cone in the center is observable and mass flow
occurs.

We simulate the emptying of two silos with different incli-
nation angles of the cone. The internal friction angle of the
granular material is around 30◦. The simulations are carried
out for inclination angles of 25◦ and 40◦. Experiments sug-
gest that we can expect to observe coreflow (i.e. stagnation
zones) for the flat angle and mass flow for the larger angle.
Our results show exactly this behavior in Fig. 3. The differ-
ence between mass flow and core flow can clearly be seen. In
addition we observe in the simulation that in the case of mass
flow, the flux vectors are directed parallel to the direction of
gravity at every point in the silo where in the case of core
flow the grains on the top slide into the middle of the silo and
mostly from there slide downward.

For a more detailed investigation of the stagnation zones
found in the left silo of Fig. 3 we provide flux profiles at
different heights of the silo. This shows that from the sim-
ulations a distinct structure of the stagnation zones can be
extracted (Fig. 4).

4.4 Instabilities in the model transition for values of β > 1
and the issue of shear bands

Bocquet et. al. show in [11] that values of β larger than 1
allow to distinguish asymptotically between a wall dom-
inated regime and a bulk regime. As a consequence the
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Fig. 4 Profiles of mass flux along the x-axis of the 25◦ silo from Fig. 3
at heights 0.07 m (solid line), 0.11 m (dashed line) and 0.3 m (dotted
line) above the hopper bottom opening. The unit of the mass flux is m

s
because the density is normalized to the specific density ρ̂s of the grains

Fig. 5 Granular velocity plotted against the distance from the wall in
grain layers. The shear band can clearly be seen

occurrence of shear bands is relatively easy explained for
β > 1. In agreement with these arguments also our simula-
tion reproduce shear bands for β > 1. But as Fig. 5 shows,
shear bands are within the hybrid model also recovered for
β = 1. The width of the band is in quantitative agreement
with the experimental results of [11, Fig. 2].

In the simulation of heap formation the choice β > 1 is
causing strong deviations between angle of repose and inter-
nal friction angle. In Fig. 6 it is seen that for the suggested
value of β = 1.75, the angle of repose in the formed pile is
much steeper than the internal friction angle, which is cho-
sen to be around 40◦. This mismatch of the dynamic angles
of repose in the different regimes of the hybrid constitutive
model (Sect. 2.4) is a feature we observed in all simulations
with β > 1. Only for β = 1, a consistent internal friction

Fig. 6 Experiment showing the difference in pile formation between
β = 1 (right) and β = 1.75 (left). In the plots on the top, the volume
fraction is displayed from light (low volume fraction) to dark (high
volume fraction). On the bottom, we display the boundary between the
cells in which the constitutive relations (22) (dense regime) are active
and those in which the constitutive relations derived from kinetic theory
(Sect. 2.2) are active

angle is found throughout the whole range of volume frac-
tions.

Even more serious is the occurrence of an instability if
β > 1 is used within the hybrid model. The instability shows
up in a fractal like density variation close to the surface of
the heap. The fractal is seen even more clearly when plot-
ting the boundary between the constitutive relations of the
dense regime and the kinetic regime (see Fig. (6)). During
the simulation fluid like regions appear at the surface of the
heap and propagate from the surface into the heap until dying
out again due to the energy dissipation. As a consequence
strongly fluctuating surfaces are observed during the heap
formation. We believe that the effect is caused by the veloc-
ity weakening regime which exists for very large density if
β is larger than 1 [12]. We want to point out, that a constant
angle of repose should be obtained, if the density divergence
in the dissipation ε is modified to ε ∝ g(ρ)2−β . This is not
excluded by glass transition theory cited in [11]. Only the
pressure should not show any anomalous divergence. Fur-
ther investigations of the observed instability are planned for
future publications.

5 Conclusion

We have studied in this work a model for granular flow in all
regimes (dilute to dense) and presented a stable discretization
and solution algorithm for this model. The model together
with the algorithm was challenged against a selection of test
problems and succeeded to qualitatively reproduce phenom-
ena like shear bands, angles of repose, stagnation points in
hopper flow to name a few. Thus we showed that the model is
capable to recover essential phenomena observed in granular
flow from dilute to dense regimes. Our model is certainly not
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unique. Many similar models are conceivable with different
forms of the yield pressure and the transport coefficients. In
this respect, one important result of our research is the numer-
ical method which allows to investigate these variations in
the future. It remains to be studied to which extent aniso-
tropic distributions of static stresses are already covered by
this class of models. The addition of a static pressure with
consistent modifications of the viscosity and the dissipation
coefficients will certainly not be enough to fully capture the
complex behavior of solid like granular matter. Besides a
more quantitative validation of the used model, the consti-
tutive relations and their analytical form, also the instability
discussed in Sect. 4.4 will be investigated in more details in
the future.
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A Variation of the temperature at constant pressure

The equation for the granular temperature within kinetic the-
ory is derived using the Boltzmann equation for inelastically
colliding particles. The energy of the particles is just the
kinetic energy. The resulting equation for the fluctuation of
the kinetic energy density U = cvρT , which is identical
to the internal energy density of the colliding gas gives in
Lagrangian notation [3]

cvρ

(
dT

dt

)
= −ρ̂s∇q − ps∇u + σ D : κ − 3

2
ρεT, (30)

where cv = 3/2 is the specific heat at constant volume. cv is
unitless since due to the lack of a granular Boltzmann con-
stant the granular temperature is defined as T = 〈(δv)2〉,
where the brackets indicate average over the Boltzmann dis-
tribution. We note that the equation does not coincide with the
usual form obtained from macroscopic hydrodynamic con-
siderations [14] due to the appearance of ps∇u. The origin
for the discrepancy is the fact, that the Boltzmann equation is
solved in zeroth order by the canonical distribution function
feq

feq = f0 exp

(
−m(u − 〈u〉)2

2kB T

)
(31)

i.e. Eq. (30) is valid for processes at constant volume, instead
of constant pressure. Note, that the term ∇u is proportional
to a change in the volume

∇u = 1

V

dV

dt
= − 1

ρ

dρ

dt
. (32)

Consequently the term in (30) proportional to the pressure
ps should not contribute to the change of the granular tem-
perature. To obtain the equation for temperature changes at
constant pressure within Boltzmann theory it would be nec-
essary to derive the equation for the enthalpy H = U + ps V .
Here we motivate Eq. (4), assuming (30) to be valid also for
constant pressure and constraining it to changes at constant
pressure.

The time change of the enthalpy at constant pressure per
unit volume is given by

cpρ
dT

dt
= 1

V

d H

dt
= 1

V

dU

dt
− ps

ρ

dρ

dt
= 3

2
ρ

dT

dt
− ps

ρ

dρ

dt
(33)

where cp is the specific heat at constant pressure per unit
mass. Considering the pressure as a function of temperature
and density ps = ps(ρ, T ), the change dps in the pressure
can be written

dps = ∂ps

∂ρ
|T dρ + ∂ps

∂T
|ρ dT . (34)

In a Lagrangian formulation we obtain with (32) and (34) at
constant pressure (i.e. dps = 0)

− ps∇u = ps

ρ

dρ

dt
= − ps

ρ

⎛
⎜⎜⎝

∂ps

∂T
|ρ

∂ps

∂ρ
|T

⎞
⎟⎟⎠ dT

dt
. (35)

Replacing ∇u in (30) by (35) and using (33), Eq. (30) is at
constant pressure transformed into (4).
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